If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+5x=71
We move all terms to the left:
16x^2+5x-(71)=0
a = 16; b = 5; c = -71;
Δ = b2-4ac
Δ = 52-4·16·(-71)
Δ = 4569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{4569}}{2*16}=\frac{-5-\sqrt{4569}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{4569}}{2*16}=\frac{-5+\sqrt{4569}}{32} $
| 10+(9-x)+27=10(9=x)+x | | -4(10+3x)-(x+8=-9 | | 9x^2+12x+4=17 | | 3(3x+6)=9(x-2) | | 3x-19+17+6x=180 | | 3x-19+18x+6x=180 | | 5(2x)+7=37 | | y=14(12)+2 | | 3x+12=2x+21 | | a+36=5a | | -4(5+3x)=-30=7x | | 8t-8+7t+1=90 | | 3(20)+v-14=20+3v | | x2-5x-5=15-2x | | 3n-(-2)=28 | | 2(3x9)=-6 | | 20w+(-11)=67+w | | -12-3(w+59)=3 | | 20w+(11)-1=4(11)+w+23 | | 20w+11-1=4(11)+w+23 | | 4a+28=6a | | 9b-49=b+23 | | 6v-36=3v+3 | | 7/u=17/3 | | (8x-10)/(2)=4x-5 | | 5x+126=174 | | -6x-3/7=4/7. | | 2u+27=u+37 | | -11+10p(p+10)=2(2p+11)+4 | | 3x+4+x+36=180 | | m-83=24 | | 0x-9=2-4x-1 |